
前回は吉例?「真空中の重力落下」でした。微分方程式の場合「吉例Lチカ」的な問題がいくつもあり、今回は放射性物質の崩壊(半減期)です。急速になのかダラダラなのか、ある一定の割合で崩壊していくアレです。Maxima様にお願いすれば微分方程式を解くのは一撃ですが、具体的な核種についてグラフを描かずにはいられませぬ。 “忘却の微分方程式(124) 反復練習87、放射性物質の半減期、Maxima” の続きを読む
デバイス作る人>>デバイス使う人>>デバイスおたく
前回は吉例?「真空中の重力落下」でした。微分方程式の場合「吉例Lチカ」的な問題がいくつもあり、今回は放射性物質の崩壊(半減期)です。急速になのかダラダラなのか、ある一定の割合で崩壊していくアレです。Maxima様にお願いすれば微分方程式を解くのは一撃ですが、具体的な核種についてグラフを描かずにはいられませぬ。 “忘却の微分方程式(124) 反復練習87、放射性物質の半減期、Maxima” の続きを読む
物理やるときには線積分は避けて通れないです、知らんけど。メンドクセーと思いつつ、Maxima様にお願いするのであれば、定型どおりに機械的に計算すればお答えが求まる気がしてきました。ありがたいことだね。でもそんなんで大丈夫か?今回は2次元平面の中で線積分求める例題でしたが、3次元でもなんでも以下同文。ホントか? “忘却の微分方程式(120) 反復練習83、線積分、Maxima” の続きを読む
前回につづき、Maxima様にお願いするなら「計算を簡単にするためのコマケーテク」など不要、そのまま計算すればOKよ、の回なんであります。折角教科書はテクを教えてくれているのに。しかし積分結果に逆双曲線関数登場。あれあれ、逆ハイパボリックサインってどんな関数だったっけ?log()の形に変形したいのよ。どしたら良いの?
前回は体積、今回は表面積デス。今回は高校生の皆さまならば一瞬で解ける部分にハマりました。入試なら落ちてマス。教科書は「楕円の一般形」の式に帰着させるのに「平方完成」していたのです。そこに踏み込んだ忘却力の年寄は難渋しました。しかしMaxima様にお願いするならそんなテクなど無用、そのまま計算すれば良かったのです。即答。
“忘却の微分方程式(117) 反復練習80、二重積分で曲面積を求める、Maxima” の続きを読む
今回はフツーに2重積分で体積を求める例題です。前回のように座標変換など出てこないのでヤコビアンさんなどは登場しませぬ。ひたすら「解くのみ」であります。こういう極力頭を使わない力業的な計算においては、Maxima様のご利益は絶大であります。ただただおすがりして計算をお願いするのみ。他力本願。違うか? “忘却の微分方程式(115) 反復練習78、二重積分で体積を求める、その2、Maxima” の続きを読む
頭に霞がかかった年寄デス。前回、二重積分を使って面積を求めたと思ったら、こんどは二重積分で体積を求めろとのお題です。なんだかな~どこかでやったような気もするな~気のせい?例題は楕円体っす。ラグビーボール型、W杯か。楕円ってことは何かい、極座標変換かい。するっていとまたまたヤコビアンさんか、真打登場ってか。
別件で正規分布「ではないやつ」のリサンプリングが分からんとブーたれていたらバチがあたりました。今回の積分の課題は正規分布に至る道筋デス。前回は特異点をすり抜けて?積分。今回は-∞から∞までの広義積分であります。「ありがち」か?教科書はテクを駆使して解いてますが、Maxima様にお願いすれば一撃。あっけない?
“忘却の微分方程式(112) 反復練習75、広義積分、確率密度関数の積分へいたる、Maxima” の続きを読む
前回は3重積分だったですが、今回は何度目かの二重積分です。しかし「特異点」登場。Singularityってやつ。恐ろし気な。。。無限大が出てくるのに定積分が計算できてしまうとはこれいかに。数学素人の年寄は目が回るばかりですが、数学じゃ「あるある」。そういえばいつもお世話になっているフーリエ変換様も区間無限大か。 “忘却の微分方程式(111) 反復練習74、2重積分、特異点、広義積分、Maxima” の続きを読む