忘却の微分方程式(161) Maxima、{dynamics}、漸化式を追跡?

mu377
Joseph Halfmoon

前回は「族に関する軌道図」を描くorbits関数でした。プロットされる軌道の中からカオスが湧きだし、拡大するとフラクタルになっておるっという不可思議。しかしそれを紡ぎだしているのは簡単な漸化式でした。今回はその漸化式の「発展の様子」を繰り返し方向にプロットしてみるevolution関数です。縦のものを横に見た感じ?

“忘却の微分方程式(161) Maxima、{dynamics}、漸化式を追跡?” の続きを読む

忘却の微分方程式(160) Maxima、{dynamics}、カオスと「窓」? orbit

MayRecursionFormulaEC
Joseph Halfmoon

前回は図形で描くカオスの中からフラクタルを紡ぎだすchaosgame関数でした。今回は「一次元離散力学系の族に関する軌道図」の中にトートツに出現するカオスを拡大したらばフラクタルなorbit関数です。お惚け老人はサッパリ分からんぜよ。まあ皆大好き(特に高校生?)漸化式を計算していたらいつの間にかカオスという感じです。 “忘却の微分方程式(160) Maxima、{dynamics}、カオスと「窓」? orbit” の続きを読む

忘却の微分方程式(159) Maxima、{dynamics}、4角と5角でカオスゲーム

chaosG_5_3_8
Joseph Halfmoon

前回は「カオスからフラクタル図形を紡ぎだす」chaosgame関数の代表例ということで正三角形をランダムに動かしながらシェルピンスキーのガスケットが描かれるのを眺めました。でもシェルピンスキーだけじゃないです。4角形でも5角形でも6角形でもカオスゲームは成り立つみたいです。ただし数字の選び方がビミョ~。 “忘却の微分方程式(159) Maxima、{dynamics}、4角と5角でカオスゲーム” の続きを読む

忘却の微分方程式(158) Maxima、{dynamics}、カオスゲームって何よ?

chaosgameEC_Sierpinsky
Joseph Halfmoon

今回、dynamicsパッケージの chaosgame関数を演習するのですが、本件、山嵜大輝先生著の同名の漫画とは「多分直接の」関係ありません。もしかすると漫画の方でもカオスからフラクタル図形を紡ぎだしているのかも知れませんが、読んでないので分かりませぬ。もしかすると奥底では結びついているのか?知らんけど。 “忘却の微分方程式(158) Maxima、{dynamics}、カオスゲームって何よ?” の続きを読む

忘却の微分方程式(157) Maxima、{dynamics}、マンデルブロ/ジュリア集合

maximaMandelbrot_Julia_EC
Joseph Halfmoon

別シリーズで「吉例マンデルブロ集合」を描きました。Maxima様にもマンデルブロ集合、ジュリア集合など描く関数あり。そしてそれは最近練習しているplotdfパッケージを含む dynamicsパッケージの中に鎮座しておるのであります。dynamicsパッケージは「複素力学系」へといざなっておるのです。おっと、ヤバイよ。 “忘却の微分方程式(157) Maxima、{dynamics}、マンデルブロ/ジュリア集合” の続きを読む

忘却の微分方程式(156) Maxima、{plotdf}、Phase plane、Phase portrait

Samples
Joseph Halfmoon

ここ数回、plotdfパッケージを使わせていただいとります。しかしplotdfの真の御威光をアカラサマにするには、Phase plane(相平面)、phase portrait(相図)といった恐ろし気なものどもを避けて通るわけにはいかないようです。どうするんだ?そしたら本棚の奥からバッチリなご本が出てきたのよ。インド?

“忘却の微分方程式(156) Maxima、{plotdf}、Phase plane、Phase portrait” の続きを読む

忘却の微分方程式(155) Maxima、{plotdf}、空気抵抗、速度?二乗?に比例

Formula
Joseph Halfmoon

前回、空気抵抗の無い時の自由落下をplotdfしてみました。今回は空気抵抗のある場合です。しかし、気づいてしまいました。高校の時に教わった「空気抵抗が速度に比例する」というドグマ?が成立するのは極めて狭い範囲だということを。「フツー」の時は速度の二乗に比例するじゃん。レイノルズ数登場。流体の沼にハマってしまうのか?

“忘却の微分方程式(155) Maxima、{plotdf}、空気抵抗、速度?二乗?に比例” の続きを読む

忘却の微分方程式(154) Maxima、{plotdf}、「自由落下空間」、地球と月

model
Joseph Halfmoon

今回はplotdf関数に戻って「実例」を描いてみたいと思います。「何の変哲もない」自由落下のモデルです。高さ方向のみ1次元、重力加速度は地表面の値で固定、空気抵抗なし、これ以上シンプルにできない?モデルです。ただし、重力加速度のみパラメータ化したので地表面だけでなく月面や火星面などいろいろ計算可能。よくあるやつね。

“忘却の微分方程式(154) Maxima、{plotdf}、「自由落下空間」、地球と月” の続きを読む

忘却の微分方程式(153) Maxima、ploteqで等電位面をプロットするのよ

freehand
Joseph Halfmoon

前回はplotdfパッケージをロードし、plotdf関数を試用。2次元の「ベクトル場を表示」しつつ、その中にマウスで境界条件を指定すると、積分した解曲線を表示してくれました。今回は同じplotdfパッケージに含まれるもう一つのプロット関数 ploteq を試用してみます。等電位面(線)、電気力線を描いてくれるんだとか。
“忘却の微分方程式(153) Maxima、ploteqで等電位面をプロットするのよ” の続きを読む

忘却の微分方程式(152) Maxima、plotdfパッケージでODEをプロットするのよ

plotDF_example1_orbit
Joseph Halfmoon

長いこと繰り返してきた「反復練習」ですが、前回で教科書末尾に到達。お教えが身に付いたかどうかは別にして、一歩を踏み出さねばなりませぬ。今回からは「一歩踏み出した」グラフを描きたいと思います。使用させていただくのはplotdfパッケージです。これを使うと「ベクトル場を表示」できちゃうみたいです。知らんけど。 “忘却の微分方程式(152) Maxima、plotdfパッケージでODEをプロットするのよ” の続きを読む

忘却の微分方程式(151)反復練習114、対角化不可の場合、1階連立微分方程式、Maxima

DE87_Ex3_Q
Joseph Halfmoon

前回、教科書が「行列の対角化を利用して一階の連立微分方程式を解くの回」だったのに、こちらはMaxima様のdesolve一発で解いてしまいました。今回の教科書は「行列を対角化できなくても固有値が一つあれば解けるの回」です。やはりMaxima様にお願するときはdesolve一発です。そんなのバカりだな。

“忘却の微分方程式(151)反復練習114、対角化不可の場合、1階連立微分方程式、Maxima” の続きを読む

忘却の微分方程式(150)反復練習113、行列対角化の応用、1階連立微分方程式、Maxima

DE84_Ex1
Joseph Halfmoon

今回は、教科書的には「行列の対角化」を利用して一階の連立微分方程式を「簡単」にして解いちまおう、の件です。しかし、Maxima様にお願する場合にはdesolve一発、何の工夫もなし。ただ、desolveは境界値問題には良いですが、一般解を求める場合、教科書的なお答えにするのに一手間いることがあるっと。そんだけ。 “忘却の微分方程式(150)反復練習113、行列対角化の応用、1階連立微分方程式、Maxima” の続きを読む

忘却の微分方程式(149)反復練習112、1階連立微分方程式の初期値問題、Maxima

de79_Ex3
Joseph Halfmoon

今回は1階連立微分方程式の初期値問題です。前回から何度目か再登板のdesolve関数。もともとが初期値、境界値問題を解きやすく?できているように思います。一般解を求める時のように解いた後で整理するようなメンドイことは不要。ほとんど何もせずとも初期値問題の解答が得られるっと。ハマリどころってやつ? “忘却の微分方程式(149)反復練習112、1階連立微分方程式の初期値問題、Maxima” の続きを読む

忘却の微分方程式(148)反復練習111、1階連立微分方程式の例題なんだが、Maxima

DE75formula
Joseph Halfmoon

今回から1階連立微分方程式の練習に入ります。教科書では2階の微分方程式を2個未知関数の1階連立微分方程式に変換したり、逆に一階の連立微分方程式から2階の微分方程式に変換できることが示されとります。なんだかな~。察するに伝家の宝刀 ode2は使えない雰囲気がありあり。desolve関数に御出馬願うしかない? “忘却の微分方程式(148)反復練習111、1階連立微分方程式の例題なんだが、Maxima” の続きを読む