
今回から参照させていただいております教科書は新たな単元?「計量線形空間」に入ります。内積が定義できないとダメなのね。Maximaでベクトルを計算するときはリスト(行ベクトル)をベクトルとみなして計算OK。でも数学の教科書的にはベクトルといったら列ベクトル表記じゃん。そゆときはどうなの?
デバイス作る人>>デバイス使う人>>デバイスおたく

前回、みんな大好き P-1AP ってやつまでたどり着いていたので、今回は単純な計算練習のつもり。練習っていって計算するのはMaxima様ですが。けれど単純に以下同文できないところが用意されとりました。「固有値が重解を持つ場合でも、対角化可能なものもある」と。勿論、対角化可能でないものもあるっと。恐れ入ります。

このシリーズ、1か月ほど間が空いてしまいました。老人の忘却力とて、1か月もお休みするとMaximaの使い方も危ないです。か細い記憶をたどりつつ、前回の流れで今回は固有値と固有ベクトルの計算、そして対角化へと入っていきとうございます。みんな大好き P-1AP ってやつ?

今回は、前回と「違う問題」なのだけれどMaxima上で行っている処理はといえばほぼほぼ同じ。でもま、やらないことには先に進まないのでほぼほぼ同じようなことをダラダラ実施。そんなんで良いのか?良いわけないですが。

前回、係数行列とかrankとかを勉強した後で、今回は線形従属であることを示せとか、線形結合で表せとかいうお題。お楽しみ?の線形空間、部分空間というものに深入り?していくための練習みたいです。Maximaで1問「解ける」ことが分かりさえすれば、何題も練習問題解かなくてもよいじゃん、と。それで反復練習になるのかもし?

前回に続き今回もスマホ上で動作するMaxima on Androidを使わせていただいて練習したいと思います。題材は行列式です。Maxima様相手にサラスの公式範囲にサイズを制限する理由は何もないのですが、入力がメンドイのと手計算用の例題を下敷きにしているので、今回はサラス公式で手計算できる3次範囲です。

前回の練習、と言って実際に計算しているのはMaxima様ですが、は「ベクトルに垂直な単位ベクトルを求める」でした。今回は「平面と直線の交点の座標を求める」です。霧のかかった朦朧とした頭でもMaxima様にお願いすれば解いてくれる、と。Maxima様は計算間違えなくても入力間違えるなよ、自分。