
今回は、対角線に関して成分が対称にならんでいる対称行列Aについて、その固有ベクトルから直交行列Uを求め、対角化せよ、との思し召しであります。過去3回くらい似たようなことを繰り返しやってきているので、復習の復習みたいな感じがしないでもないです。ぜんぜん身についてないんだけれども。。。
デバイス作る人>>デバイス使う人>>デバイスおたく
前回は「数学風?」列ベクトル表記にこだわって処理してみましたが、今回、早くも列ベクトル断念。やりたいことにピッタシの関数があったのですが、処理は行単位デス。行ベクトルというかリスト表現のままの方が処理は簡潔に書けますものね。それでグラム・シュミットの直交化法じゃ、と。 “忘却の微分方程式(51) 反復練習15、グラム・シュミットの直交化法、Maxima” の続きを読む
前回、みんな大好き P-1AP ってやつまでたどり着いていたので、今回は単純な計算練習のつもり。練習っていって計算するのはMaxima様ですが。けれど単純に以下同文できないところが用意されとりました。「固有値が重解を持つ場合でも、対角化可能なものもある」と。勿論、対角化可能でないものもあるっと。恐れ入ります。
このシリーズ、1か月ほど間が空いてしまいました。老人の忘却力とて、1か月もお休みするとMaximaの使い方も危ないです。か細い記憶をたどりつつ、前回の流れで今回は固有値と固有ベクトルの計算、そして対角化へと入っていきとうございます。みんな大好き P-1AP ってやつ?
今回は、前回と「違う問題」なのだけれどMaxima上で行っている処理はといえばほぼほぼ同じ。でもま、やらないことには先に進まないのでほぼほぼ同じようなことをダラダラ実施。そんなんで良いのか?良いわけないですが。
前回、係数行列とかrankとかを勉強した後で、今回は線形従属であることを示せとか、線形結合で表せとかいうお題。お楽しみ?の線形空間、部分空間というものに深入り?していくための練習みたいです。Maximaで1問「解ける」ことが分かりさえすれば、何題も練習問題解かなくてもよいじゃん、と。それで反復練習になるのかもし?
前回に続き今回もスマホ上で動作するMaxima on Androidを使わせていただいて練習したいと思います。題材は行列式です。Maxima様相手にサラスの公式範囲にサイズを制限する理由は何もないのですが、入力がメンドイのと手計算用の例題を下敷きにしているので、今回はサラス公式で手計算できる3次範囲です。