
最近、調子に乗ってスマホ上で言語処理系を動かしているためかスマホの電池の減りが速いです。そこでMaxima様についてはスマホ上のMaxima on Androidから、パソコン(WindowsPC)上のMaxima 21.05.2 利用に戻しました。Maxima様は特にPCだからとかスマホだからとか気にする必要もなし。
デバイス作る人>>デバイス使う人>>デバイスおたく
前回に続き今回もスマホ上で動作するMaxima on Androidを使わせていただいて練習したいと思います。題材は行列式です。Maxima様相手にサラスの公式範囲にサイズを制限する理由は何もないのですが、入力がメンドイのと手計算用の例題を下敷きにしているので、今回はサラス公式で手計算できる3次範囲です。
前回の練習、と言って実際に計算しているのはMaxima様ですが、は「ベクトルに垂直な単位ベクトルを求める」でした。今回は「平面と直線の交点の座標を求める」です。霧のかかった朦朧とした頭でもMaxima様にお願いすれば解いてくれる、と。Maxima様は計算間違えなくても入力間違えるなよ、自分。
前回に引き続き今回も微分方程式です。今回は数値解の求め方について、Mathematicaの例題をMaximaでも解いてみた、という感じです。例によって、良いように勝手にやってくれるお楽なMathematicaと、ちゃんと自分でやれよ、という感じのMaximaという感じ。結構辛いよ素人には。
前回、勾配とか発散とかベクトル解析らしきことを少しやってみましたが、今回は、ベクトル場の図示です。Mathematica、カッコよく描けるのだけれども、非力なラズパイ3の限界を感じてしまいました。Maximaは3Dでやるのは面倒そう(やらないケド。)
前回、偏微分と重積分だったので、今回はベクトル解析であります。何時にもまして感じますのが、分かり易いお名前の専用関数があり「お任せ」で処理してくれるMathematicaと、計算のやり方を知って「さえ」いれば計算が出来るMaximaのスタイルの違いであります。私のように高校レベルの公式すらおぼつかないものにはMaximaキツイ。